Stacks and Queues

Discrete Event simulation.

+
Stack

m Four Standard operations
m push (add to top of stack)
m pop (remove from top of stack)
m peek* (get from top of stack)
m empty* (test whether there are elements in the stack.)

m * - optional

Java Stack Class

Modifier and Type Method and Description

boolean empty ()
Tests if this stack is empty.

E peek ()
Looks at the object at the top of this
stack without removing it from the
stack.

E pop()
Removes the object at the top of this
stack and returns that object as the
value of this function.

E push(E item)
Pushes an item onto the top of this
stack.

int search(Object o)
Returns the 1-based position where an
object is on this stack.

Ideal Queue

m Three operations:
m enqueue (add (last))
m dequeue (remove (first))

m peek (get (first))

m Special Queues
m Fixed Capacity Queue (limits the number of items)

m Priority Queue (orders removal by priority)

+
Java Queue Interface

Throws Returns special
exception value
Insert add(e) offer(e)
Remove | remove() poll()
Examine || element () peek ()

Discrete Event Simulation

m Single Queue, single server

i

1

1

R TR

m Single Queue, multiple servers

m Multiple Queue, multiple servers

T4

Discrete Event Simulation

m Single Queue, single server

m Single Queue, multiple servers

1

m Multiple Queue, multiple servers

1

1

R

&)

T4
AT

T4

==

Discrete Event Simulation

m Single Queue, single server

m Single Queue, multiple servers

(22 =
- >
m Multiple Queue, multiple servers T /f

1

1

7

1

i

TR

‘EEECE T4

+ .
Arrival process

m How customers arrive: What is inter-arrival time?

m e.g. between 1-3 min

m Service Mechanism: How long will service take?
m e.g.0.5-2.0 min

m Queue Characteristics: FIFO

==
Example Data

Customer Inter-arrival Time Service Time

1.7 min
C2 1.3 1.8
C3 1.1 1.5
C4 1.0 0.9
Queue _mmm
Idle

Simulation

==
Example Data

Customer Inter-arrival Time Service Time

1.7 min
C2 1.3 1.8
C3 1.1 1.5
C4 1.0 0.9
Queue _mmm
Idle

Simulation Lo 1 [] 1

==
Example Data

Customer Inter-arrival Time Service Time

1.7 min
C2 1.3 1.8
C3 1.1 1.5
Cca 1.0 0.9
Queue _mmm
. . Idle
Simulation Lo 1 [] 1

3.2 C2 [C2] C1

==
Example Data

Customer Inter-arrival Time Service Time

1.7 min
C2 1.3 1.8
C3 1.1 1.5
Cca 1.0 0.9
Queue _mmm
. . Idle

Simulation Lo 1 [] 1

3.2 C2 [C2] C1

3.6 [l C2 C1

==
Example Data

Customer Inter-arrival Time Service Time

1.7 min
C2 1.3 1.8
C3 1.1 1.5
C4 1.0 0.9
Queue _mmm
. . Idle

Simulation Lo 1 [] 1

3.2 C2 [C2] C1

3.6 [] C2 C1

4.3 c3 [C3] c2

==
Example Data

Customer Inter-arrival Time Service Time

1.7 min
C2 1.3 1.8
C3 1.1 1.5
C4 1.0 0.9
Queue _mmm
. . Idle

Simulation Lo 1 [] 1

3.2 C2 [C2] C1

3.6 [] C2 C1

4.3 c3 [C3] C2

5.3 c4 [C4, C3] C2

==
Example Data

Customer Inter-arrival Time Service Time

1.7 min
C2 1.3 1.8
C3 1.1 1.5
C4 1.0 0.9
Queue _mmm
. . Idle
Simulation Lo 1 [] 1
3.2 C2 [C2] C1
3.6 [] C2 C1
4.3 c3 [C3] C2
5.3 C4 [C4, C3] C2

5.4 [C4] C3 C2

High Level Overview

Data Structures

Array n/a O(n) O(1) yes no Arrays.sort()
ArrayList O(n) O(n) O(1) yes no Collections.sort()
LinkedList O(1) O(n) O(n)* yes no Collections.sort()

Collections.sort()
Stack O(l1) n/a n/a yes no *

* - Note: for a LinkedList, the index is implicit by counting, either
up or down, from head, where the head node is either at index 0,
when counting up, or at index size — 1, when counting down.

High Level Overview

Collection Interfaces/Subclasses

Type Sequential Unique Sorted Extends or Implements
Values

Set No Yes No Collection

SortedSet No Yes Yes Set

List Yes No No Collection

Queue No No No Collection

Deque No No No Queue

ArrayList Yes No No AbstractList

LinkedList Yes No No AbstractSequentalList

Stack No No No Vector

All java.util.Collection implementations are Iterable!
All java.util.List implementations have a listIterator method

High Level Overview

m [terator
(required by Collection interface)

m one direction

= iterate Questions:
® remove is optional « Which iterator makes

.) . o
m List Iterator sense for a singly linked list:

(required by List interface)

= bi-directional * What, if any is a drawback of a

_ ListIterator that traverses a singly
m lterate

linked list?
m add
® remove | e Is one direction more
m start at any index efficient then the other?

